翻訳と辞書
Words near each other
・ Semirostrum
・ Semirâma
・ Semis
・ Semisalsa galilaea
・ Semisalsa stagnorum
・ Semiset
・ Semisi Masirewa
・ Semisi Naevo
・ Semisi Sika
・ Semisi Tapueluelu
・ Semisi Taulava
・ Semisi Telefoni
・ Semisi Tora
・ Semisimple algebra
・ Semisimple algebraic group
Semisimple Lie algebra
・ Semisimple module
・ Semisoft sign
・ Semisonic
・ Semisopochnoi Island
・ Semisphaeria
・ Semispherical drum
・ Semispinalis capitis
・ Semispinalis cervicis
・ Semispinalis muscles
・ Semispinalis thoracis
・ Semistable abelian variety
・ Semisulcospira
・ Semisulcospira decipiens
・ Semisulcospira diminuta


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Semisimple Lie algebra : ウィキペディア英語版
Semisimple Lie algebra

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras, i.e., non-abelian Lie algebras \mathfrak g whose only ideals are and \mathfrak g itself.
Throughout the article, unless otherwise stated, \mathfrak g is a finite-dimensional Lie algebra over a field of characteristic 0. The following conditions are equivalent:
*\mathfrak g is semisimple
*the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate,
*\mathfrak g has no non-zero abelian ideals,
*\mathfrak g has no non-zero solvable ideals,
* The radical (maximal solvable ideal) of \mathfrak g is zero.
== Examples ==
Examples of semisimple Lie algebras, with notation coming from classification by Dynkin diagrams, are:
* A_n: \mathfrak _, the special linear Lie algebra.
* B_n: \mathfrak_, the odd-dimensional special orthogonal Lie algebra.
* C_n: \mathfrak _, the symplectic Lie algebra.
* D_n: \mathfrak_, the even-dimensional special orthogonal Lie algebra.
These Lie algebras are numbered so that ''n'' is the rank. Except certain exceptions in low dimensions, many of these are simple Lie algebras, which are ''a fortiori'' semisimple. These four families, together with five exceptions (E6, E7, E8, F4, and G2), are in fact the ''only'' simple Lie algebras over the complex numbers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Semisimple Lie algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.